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Abstract-The formal solutions to a class of non-axisymmetric problems involving a transversely isotropic elastic
plate are derived. The Cagniard--deHoop method of inversion is used to obtain explicit solutions on the epicentral
axis for certain materials, when a point shear load, with a "ramp" time-dependence, is applied to one face of the
plate. Also treated is a problem involving plane-strain type motions, namely, the impulsive application of a normal
line load to one face ofan anisotropic plate, inversion for certain materials again being carried out on the epicentral
axis. In both cases a numerical analysis of the solutions is presented.

1. INTRODUCTION

IN THE present paper the formal (transformed) solutions to a general class of non-axisym
metric, transient, elastic wave propagation problems involving a transversely isotropic,
or hexagonal, infinite plate are derived-a generalization ofsome recent work of the authors
[1] on isotropic plates. To illustrate the general theory, a particular case is examined, namely,
the application of a point shear load, with a "ramp" time-dependence, to one face of the
plate, and in the context of this problem, inversion is carried out explicitly for certain types
of materials. Also treated is the excitation of plane-strain type waves in an anisotropic plate,
by the impulsive application of a normal line load, again inversions being carried out
explicitly for certain classes of materials. The response solutions for these problems are
written for the epicentral axis, and in particular are analyzed numerically at the plate center
for several specific anisotropic and isotropic solids.

The lack of knowledge regarding elastic transients in bounded anisotropic media is
one of the main motivations behind the work at hand. As far as the authors are aware, the
only existing studies on this topic are those of Hensel and Curtis [2], Suncheleev [3], and
Rosenfeld and Miklowitz [4J, on anisotropic rods, and a paper of the writers [5], in which
the solutions to several problems involving plane-strain type waves in plates were given
and analyzed numerically for the far-field. Both aspects of the present paper, i.e. non
axisymmetric waves and the near-field in anisotropic waveguides, have of course received
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attention in the limit of isotropy. Besides the work of the writers [1], there should be men
tioned the studies of Pytel and Davids [6], and Davids and Lawhead [7], who treated point
shear and oblique impacts on one face of an infinite plate, and those of Harkrider [8],
who, for a layered medium, considered the propagation of non-axisymmetric waves gen
erated by time-harmonic, buried sources. Studies of the near-field in isotropic plates have
been given by Mencher [9J who treated excitation by a spherically symmetric point source,
and by Knopoff [10J, Davids [11J, Pytel and Davids [6J and [12], Davids and Lawhead
[7], and Broberg [13], who considered surface load problems. Attention in the above
papers was confined to the epicentral axis, but some exact information away from this axis
has also been given by Rosenfeld and Miklowitz [14], who obtained the magnitudes, times
of arrival, and locations of the wave fronts in infinite and semi-infinite plates, these fronts
being generated by several types of surface and end loadings.

The formal solutions to the non-axisymmetric problems in the present work are
obtained, as in [IJ, by a combination of multi-integral transform and integral superposition
methods, whereas in the plane-strain example, multi-integral transforms alone are used.
In both the point shear and line load problems, inversion for the epicentral axis was carried
out by the Cagniard-de Hoop method. It is found that this technique applies, in its direct
form, only for situations in which certain branch points are not on the real axis, and it is
those circumstances which are treated in this paper.

2. NON-AXISYMMETRIC WAVE PROPAGATION IN A TRANSVERSELY
ISOTROPIC PLATE

2.1. The general problem

Transverse isotropy and hexagonal symmetry are characterized by the existence of an
axis-the z-axis below-with the property that in all planes perpendicular to it the material
behaves isotropically. In terms of cylindrical coordinates r, e, z, the displacement equaJions
of motion for such a medium are, in the absence of body forces (see, for instance, Mirsky
[15]),

(2.1)

(2.2)

(2.3)
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where the u denote displacements, t is the time, p is the material density, and a, b, c, d, and
e are given in terms of the elastic constants Cij by: a = Ctl , b = Cl3 +C44' C = C4 4' d = C33'

and e = ¥Cll -C12)' Reduction to isotropy is achieved by setting a = d ;[ +2jl, c = e = jl,
and b = A+jl, where Aand jl are Lame's constants.

The pertinent stress-displacement relations are

b )( OUr Ur) b-c oU.8 dOuz
0' = ( -c -+- +----+ -

zz or r r ot) OZ
(2.4)

(2.5)

(2.6)

Taking the z-axis perpendicular to the plate surfaces, with the origin at the plate center,
the boundary conditions are taken to be

O'zz = gt(O)Tl(t)It(r), Z= -H

O'zr = g2(t))T2(t)I2(r), Z= -H

O'z8 = - g3(O)T2(t)I 2(r), Z= -H

O'zz = O'zr = O'z8 = 0, Z= H

where 2H is the plate thickness and the g, T, and I, are arbitrary functions.
Since the solution technique is similar to that used by the author's in [1J, only an outline

will be given here. The Laplace transform W.r.t. time is applied to (2.1) through (2.4) and then
finite Fourier cosine and sine transforms are applied to (2.1), (2.3), (2.4), (2.5) and (2.2),
(2.6), respectively. The r-dependence is suppressed by means of the superposition integrals

f OC
'

u~ = J0 X 2(k, p, z)Jp(kr) dk

(2.7)

(2.8)

(2.9)

where the bar denotes a Laplace transform, parameter p, the tilde denotes a Fourier trans
form, parameter p, the superscipts C and S denote a cosine or sine transform, respectively,
J p denotes a Bessel function of the first kind of order p, and the X are functions to be deter
mined. It is found that if equations (2.7), (2.8) and (2.9) are to satisfy the transformed equa
tions of motion, then the X must satisfy certain ordinary differential equations. Solutions to
these equations are readily obtained and, using representation integrals based on inverse
Hankel transforms, the arbitrary constants involved can be found on applying the trans
formed versions of the boundary conditions. Thus the transformed field quantities can be
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obtained and the procedure yields for the stresses:

where

M 2 = keg /1')1 (h I j~ sinh 'It z cosh YJ 2H - hz/I sinh YJ 2Z cosh YJ I H)
YJ 2 YJ I

+h l h2g'1'211- I (sinh YJ2Z sinh YJIH -sinh YJIZ sinh YJ2H)

Fe = '!2hd2 cosh YJIH sinh YJ2H -h2fl cosh YJ2H sinh YJIH
YJ2

(2.10)

(2. 11)

(2.12)

j = 1,2

j = 1,2
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_( -lY(Ak4 +2BJP2k2 +P~(D) 1/2J 1
/
2,

A = (ad +c2- b2)2 - 4adc2

B = d[(d +c)(ad +c2- b2)- 2dc(a +c)]

D=d2(d-c)2

(j)(c) = (eP +pp2)1/2

1~ = {OO rII(r)J{J(kr)dr

g(f3) == g~ = ~ (f3)

j = 1,2

this last condition being necessary if the present mode of solution is to be applicable.
Equations (2.10), (2.11) and (2.12) constitute the formal solutions. Rather than attempt

inversion in the context of the general problem, attention is now focused on a particular
case.

2.2 Point shear load problem

The specific problem chosen for further study is the application of a point shear load,
with a "ramp" time-dependence, to one face of the plate (Pytel and Davids [6], in their
isotropic plate work, treated the same geometry, but the time-dependence was that of a
Heaviside step). The boundary conditions are

azz = 0, z =-H

l5(r)
az,= --cos8S(t),

nr

(j(r) .
azB = - sm 8 S(t),

nr

where l5 denotes the delta function and

0, t < °

z = -H

z = -H

z = H

S(t) = 0< t < Q

ao being a constant and Q a measure of the rise-time of the pulse. It should be noted that
since 8 cannot be defined at r = 0, the point load must be interpreted as acting over a finite,
but extremely small, area.

Inserting the above boundary conditions into (2.10) (2.11) and (2.12), and inverting
the finite Fourier transforms, which presents no difficulties in the present case, the
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Laplace-transformed stresses are found to be

(2.13)

(2.14)

(2.15)

(2.16)

where

M 5 = hI hzlJ 1(cosh '1 I H cosh IJz Z - cosh IJ zH cosh '1 I z)

M 6 = h l hzlJI(sinh IJ zH sinh IJlz-sinh IJIH sinh IJzz)

M 7 = IJtfZhI cosh 1J 1H sinh IJzZ-j~hz cosh IJ zH sinh IJIZ
IJz

M 8 = 11hZ sinh IJ zH cosh IJIZ- IJlj~hI sinh IJIH cosh IJzZ.

IJz

The expression for -(2Qrr/ao sin {})iiz9 is the same as (2.14), except that the roles of
(d/dr)J l(kr) and (l/r)J 1(kr) are interchanged.

The method of inversion best suited to near-field studies is the so-called Cagniard~

deHoop technique (see, for instance, Rosenfeld and Miklowitz [14J). To apply this technique,
the various hyperbolic functions in equations such as (2.13) are expressed in terms of
exponentials and then the denominators arising are expanded by means of the binomial
theorem. Then the results are collected into a single series of exponentials, a form which
has the advantage that each term of the series can be identified with a particular type of
wave and so the early arriving disturbance can be assessed with the aid of just a few terms.
Using large p expansions it is found that the disturbance associated with '11' '1 z' and 6,
respectively, are (i) fully transverse wave traveling with speed Jc/p in the z-direction,
henceforth denoted by a subscript S, (ii) fully longitudinal wave traveling with speed Jd/p
in the z-direction, henceforth denoted by a subscript P and (iii) fully transverse wave (of
SH type) traveling with speed Jc/p in the z-direction, henceforth denoted by the sub
scripts SH.

Restricting attention to the epicentral axis, i.e. to r = 0, which leads to the simplifica
tions

1 d
-J l (kr) = -d J 1(kr) = k/2
r r

it is found from (2.13) and (2.14) that iizz = 0 and that a few ofthe individual wave contribu
tions to iirz are given by, in terms of the new variables z = H(a-I), k = pwJ(p/d),

[_2rr_Q-=---d_ii",-~rJ = (l-e~PQ) (if' WIJIt'Z e-pH~~N(jJ!d) dw
pao cos {} p Jo (lJz -'11)<1>

[
2rrQ dii~rJ -(I-e- pQ) {CO WIJZYI e-pHa~I';(PjdJ dw
pao cos {} s Jo (lJz -'11)<1>



j = 1,2, (2.19)

(2.21 )

(2.22)

(2.23)
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where
'1iw))(2cd) = [(ad +c2_b2)W2 +d(d +c)-( -IY(Aw4 +2Bw2 +D)+J+,

Yiw) = [(b-C)2W2_dL(w)J'1;(w) +dL(w), j = 1,2,

<I>(w) = dL(w) +[dL(W)-(b-C)2w2{c1dL(W)N(W)T

N(w) = cw2 +d, L(w) = aw2 +d

r(w) = l/J +(w)N _(w)

l/J±(w) = h1(w)'11(W)!2(W)±h2(w)'12(W)!1(W)

hiw) = [b(b-c)-ad]w2 +cd'1;(w)-d2, j = 1,2,

jj(w) = (b - c)'1;(w) +aw2 +d, j = 1,2,

e5(w))(c) = (ew 2 +d)+.

In equation (2.17) the subscripts PS denote the contribution from a P wave reflected at the
lower surface ofthe plate as an S wave. It should be noted that the expressions are not valid
at C( = 2 (the lower surface of the plate), since there, for instance, the fact that the PS wave
adds to the P wave would have to be taken into account. It should also be noted that the
sequence in which the terms are listed is not meant to imply their order of occurrence,
which can change from material to material and from station to station. It should be noted
that the expressions for - 2nQiize/(ao sin e) are the same as the right hand sides of (2.15),
(2.16), (2.17), and (2.18), and so attention hereafter is restricted to iizr '

The integrals in (2.15), (2.16), (2.17), and (2.18), are now in a form to which the final step
of the present {llode of inversion can be applied. The essence of this step is to try and make
substitutions such that the above integrals become Laplace transforms, since if this can be
achieved, inversion follows by inspection, provided no non-integrable singularities arise.
For example, this goal can be reached in (2.15) on making the substitutions

t p = HC('12.J(p/d), tPQ = Q+t p (2.20)

provided these new variables can be identified with time, that is to say, provided '72 is real,
positive, and monotonically increasing, on the real, positive w-axis. If this is not so, then
paths in the w-plane must be sought along which it is true and which are equivalent (in the
sense of the Cauchy-Goursat theorem) to the original path of integration. In this indirect
fashion (2.15) would again reduce to a Laplace transform and inversion would follow im
mediately, provided no non-integrable singularities arise. Clearly the preceding discussion
also applies to (2.16), (2.17), and (2.18), except that the appropriate substitutions are

ts = C('11 H )(p/d), tSQ = Q+ ts

tps = [(2-iX)'11 +2'12JH)(p/d), tpsQ = Q+tps

tSH = HiXe5)(p/d), tSHQ = Q+tSH '
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[
21tQMal]
pao cos 0 P=

The question of the location of paths-~the so-called Cagniard-deHoop paths-in the
w-plane such that on them substitutions such as (2.20) can be interpreted as time variables
depends on the multi-valued structure of the ~)w). Though the general issue is quite com
plicated, as can be seen from the work of Kraut [16J on unbounded anisotropic media, if
attention is confined to the epicentral axis then circumstances arise for which the analysis
is considerably simplified. A detailed investigation of this area has been given elsewhere
by the authors [17J, and only a brief summary will be presented here. Equation (2.19) shows
that in general the ~j(w) have six branch points and it was found that two major categories
arose, namely, (i) two branch points on the imaginary axis and four in the complex plane,
(ii) two branch points on the imaginary axis, and four on the real axis. For case (i) it was
shown that, on suitably defining the branches, the ~j are positive, real, and monotonic
increasing on the positive, real w-axis, and hence for substitutions such as (2.20) the
Cagniard--deHoop path is the positive, real w-axis, i.e. the original contour of integration.
For case (ii) the direct method fails in that the ~j become complex on the original contour
of integration. Using a set ofcriteria developed by Musgrave [18J, it was found in a numerical
study of several materials that when branch points fall on the real axis then the wave sur
faces were such that cuspidal edges were being intercepted. Though Kraut [16J and Duff
[19J treated the interception of cuspidal edges in connection with some unbounded media
work, here the situation is more complicated in that one has to contend with the multiple
reflection of such singular wave surfaces. Another interesting item in the area is the possibil
ity of intercepting other singularities, such as conical points (recently examined by Burridge
[20J in a study connected with infinite media). It seems clear that the various branch point
situations are closely connected with physical singularities and it is hoped to pursue such
questions further in a later work.

Focusing on materials and orientations for which no branch points occur on the real
axis, Cagniard--deHoop substitutions such as (2.20) are directly applicable and (2.15), for
instance, becomes

1 Jd (X [__W_~I'_h~] -ptpdt

~H P)H'v"(p/d) (~2-171)lD(d~2/dw) w=w(tp) e p
(2.24)

--~-jqJ"X [ W~1}'2 ] e-PtPQdtpQ

rxH p Q+H"(pjd/ (~2 -~1)lD(d~2/dw) w=w(tPQ)

where w = w(tp ) and w = w(tPQ) are the appropriate roots of (2.20). On the introduction of
suitable Heaviside step functions, the integrals in (2.24) become Laplace transforms, and so
inversion is immediate, giving

[
21tQdaor] 1[ WllI Y2 ] H(= - Tp-IX)
paocosO P IX (~2-~1)lD(d~2/dw) w=w(tp)

1[ W~d'2 ]-- H[TpQ-(IX +TQ)J
Cf. (rI2-~1)lD(d~2/dw) w=w(tPQ)

where the following dimensionless times have been introduced

T = tpJ~ TpQ = tPQ /~ TQ = Q ~
P H p' HV p' H p

and H(T) denotes the Heaviside step function.

(2.25)
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In a similar fashion, (2.16), (2.17), and (2.18) can be shown to give

[
21t

Q
dO'«,] = _~[ W1]2'l't ] H(r -rxJ~)

pO'ocose S r:t. (1'/2 11l)cI>(d1'/ddw) w=w(tsl s c

1[ W1'/2'l't] (Jd)+- H rSQ-r:t. --rQ
r:t. (1'/2-1'/t)cI>(d1'/tldw) w=w(tSQ) C

[
21tQdO'«,] { W1'/2'l't(l +0 }
pO'ocose PS = (112-1'/t)cI>[(2-r:t.)(d1'/t/dw)+2(d1'/2/dw)] w=w(tpsl
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(2.26)

(2.27)

(2.28)

where

't"s = 1'/t(w)rx (2.29)

rSQ = rQ +rs (2.30)

't"ps = (2 r:t.)1'/t +21'/2 (2.31)

TpsQ = rQ+TpS (2.32)

TSH = b(w)r:t. (2.33)

rSHQ = TQ +rsH (2.34)

and W= WeTs), W= W(TSQ)' W= W(Tps), W= w(rpSQ)' W= w(rSH), and W= w(rSHQ)' are the
appropriate roots of (2.29), (2.30), (2.31), (2.32), (2.33) and (2.34), respectively.

A numerical analysis of these and similar expressions is given in section four of the
paper.

3. THE IMPULSIVE APPLICATION OF A NORMAL LINE LOAD TO
ONE FACE OF AN ANISOTROPIC INFINITE PLATE

In this section a further contribution to the study of the near-field in anisotropic wave
guides is given in the context of the title problem (which was studied by Broberg [13], in
the limit of isotropy).

Several orientations of the crystallographic axes are to be considered and in order to
preserve generality, dimensionless coordinates ~, 1'/, ( are used. Each of these coordinates is
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(3.1 )

(3.2)

(3.3)

(3.4)

to be interpreted as one of the crystallographic axes* x, y, Z, divided by the plate half
thickness H. In terms of these coordinates, the line load is taken parallel to the /l-axis and
the plate surfaces are specified by , = ± 1. Under these circumstances (and assuming zero
initial conditions and body forces), it is found for certain classes of anisotropy that the line
load gives rise to waves of the plane-strain type, the equations of motion of which are

a2U, a2u. t)2U , D2u,
a·-.-' +b----"- +--' = d~··-".ae a~a, ae <7T

2

;,2. ;,2 ;,2 ;,2

c(~+b~+d~ = d~..!!.fae a~a( ae OT2
where a, b, c and d are related to the elastic constants in the manner shown in Table 1, and
! is the dimensionless time HT = t.J(d/p). The equations for the orientations: H~ = z,
H( = x; H~ = y, H( = x; H~ = z, H( = y, which also admit of plane-strain motions, can
be obtained from (3.1) and (3.2) on setting a = d, d = a. Physically, the cases involving three
constants correspond to cubic crystals, those involving five constants correspond to
hexagonal crystals and transversely isotropic materials, those involving six constants corres
pond to certain types of tetragonal crystals, and those involving nine constants correspond
to orthorhombic crystals and orthotropic materials.

Under plane-strain conditions, the pertinent stress-displacement relations are

aUi; au,
Haii; = d c( +(b-c) a~'

_ .(au~ au,)
Ha~i;-c a[+a~

au~ aUi;
Ha~~ = aJ[ +(b c) a( . (3.5)

The stresses for the orientations: H~ = z, H( = x; H~ = y, H( = x; H~ = Z, H( = y,
can be obtained from (3.3), (3.4), and (3.5) by setting a = d, d = a.

The boundary conditions for the problem are

a" = -aQc5(~)c5(!).} ~
~=

a" = °
aii; = a" = 0, ( = 1

(3.6)

(3.7)

where aQ is a load constant.
The details of the solution technique are quite similar to those given by, for instance,

Rosenfeld and Miklowitz [14J, and only an outline of the process will be given here. Taking
Laplace and Fourier exponential transforms, (3.1) and (3.2) reduce to a set of coupled
ordinary differential equations, whereas (3.3), (3.4) and (3.5) express transformed stresses
in terms of transformed displacements. The solutions to the ordinary differential equations
involve four arbitrary constants, which can be evaluated on applying the transformed
boundary conditions, which are obtained from (3.6) and (3.7). In this fashion the transformed
field quantities are obtained and again inversion is approached by means of the Cagniard
deHoop method. Restricting attention to materials and orientations for which no branch

* The notation as regards these axes is that given in Love [21].
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points occur on the real axis and confining interest to the epicentral axis (~ = 0), a few ofthe
individual wave contributions to the normal displacement ua(u~ = 0 for ~ = 0), where
ex = ( +1, can be shown to be

[
cnuaJ c [ L0 1 ] )~ = - H(rp-ex (3.8)
H(Jo p ex (172-17d(J>(dl12/dw) w=w(tp)

[~~:l -~[(172-17~~~17ddwJw=w(tS)H(rs-exJ~) (3.9)

[
cnuaJ { L0 2(1- n }
H(Jo ps -c (172 -171)(J>[(2-ex)(d17ddw) +2(d172/dw)] w=w(tps)

(3.10)

x H(rps-(2-ex)j~-2)
where

2 b-c 20). = I-n·-~~w
'1) d ' j = 1,2, (3.11 )

and all other functions are the same as in the point shear load problem, except that a, b, c,
and d have the broader interpretation given in Table 1. It should be noted that the above
expressions are not valid at the lower surface of the plate since there, for instance, the P
and PS waves combine.

TABLE I. ELASTIC PARAMETERS FOR THE CLASSES OF

MATERIALS AND ORIENTATIONS UNDER CONSIDERAnON

Axes: H ~ = x, H ( = z

No. of elastic a b c d
constants

3 Cll C12 +C44 C44 Cl1

5 C1 1 C[3+ C44 C44 C33

6 C11 C13 +C44 C44 C33

9 C1 1 C 13+ C55 C 55 C33

Axes:H~ = x,H( = y

No. of elastic
constants a b C d

3 Cll C 12 +C44 C44 Cll
5 C ll !(Cl[ +CI2) 1(c ll -cd Cll

6 C1[ C12 +C66 C66 Cll
9 c[ 1 C12 + C66 C66 C22

Axes:H~=y,H(=z

No. of elastic
constants a b C d

5 C[ [ C13+ C44 C44 C33

6 c[ 1 C 13 + C44 C44 C33

9 C22 C23 +C44 C44 C33
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A numerical discussion of (3.8), (3.9), (3.10), and other expressions where necessary is
given in the following section.

4. NUMERICAL RESULTS

In this section some numerical studies of (2.25), (2.26), (2.27), (2.28), (3.8), (3.9), (3.10),
and other wave contributions where necessary, are presented for the plate center (ex = 1).
The materials treated in connection with the point shear load problem are the transversely
isotropic medium ice, the hexagonal medium cobalt, and isotropic media with Poisson's
ratio (J = 0·10 and 0·45 for comparison purposes. The solids studied in the line load problem,
for some specific orientations of the axes of symmetry, are the cubic media sodium chloride
and pyrites, the hexagonal medium cobalt, the transversely isotropic medium ice, the
orthorhombic medium ex-uranium, the orthotropic medium beechwood, and isotropic
media with (J = 0,10,0,20,0'30 and 0·45. All the above materials are such that no branch
points occur on the real axis.

The mode of computation adopted was as follows: For a given material, orientation of
the axes of symmetry and value of the rise time LQ the sequence of arrivals was determined.
Then the pertinent contributions, i.e. expressions such as (2.26), and the various functions
of L involved, i.e. expressions such as (2.29), are computed as functions of w. The elastic
constants used, which were obtained from Hearmon ([22J and [23J), are shown below in
Table 2, all units being 1011 dynes/cm 2

.

TABLE 2. VALUES OF THE ELASTIC CONSTANTS

Materials ('11 ('22 ('33 ('44 ('55 ('66 C12 ('13 ('23

Sodium chloride 4·83 1·26 1·25
pyrites 36·1 10·5 -4,7
Beryl 26·94 23-63 6·53 9-61 6·61
Ice 1·36 1-46 0·32 0·67 0·52
Cobalt 30·70 35·81 7·55 16·50 10·27
:x-uranium 21-47 19·86 26·71 12-44 7·34 7-43 4·65 2·18 10·76
Beechwood 0·170 1·580 0·338 0·156 0·044 0'103 0·150 0·135 0·222

Shown in Figs. 1 and 2 are the dimensionless mid-plate stresses as a function of time in
the point shear load problem, for ice, cobalt and isotropic media with (J = 0·10 and 0·45.
These diagrams show that the response as regards overall behaviour is quite similar in
both anisotropic and isotropic media. Thus in all cases the stresses undergo finite jumps at
the shear (S, SH) and delayed shear (SQ, SHQ) arrivals and the maximum stresses occur
at the SQ, SHQ arrival. There are differences in the "fine structure" of the responses in the
isotropic and anisotropic solids, as evidenced by the more pronounced effect of the PQ
phase in the anisotropic media. One other feature that should be mentio..-:d is the difference
in the sequence of arrivals for (J = 0·45 over those in the other media.

The dimensionless mid-plate, vertical displacements in the line load problem are
presented in Figs. 3-7 as a function of time. Certain specific orientations of the axes of
symmetry are considered and the media are sodium chloride, pyrites, cobalt, ice, ex-uranium,
beechwood, and isotropic media with (J = 0'10,0'20,0'30 and 0·45. Before embarking on
any detailed discussion, some overall features should first be noted. On observing that
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'11 = Jd/C,'12 = 1, when w = O,it follows from (3.8),(3.9),and (3.11)thatthePportion of the
disturbance starts with an infinite amplitude, whereas the S portion starts with zero
amplitude. Moreover, it can be seen that the PP, PPP, etc. phases also begin with an infinite
amplitude, whereas all other phases, such as PS, SS, PPS etc., start with zero amplitude.
The infinite amplitudes (which behave like r- t as r -+ 0) are of course due to the singular
nature of the load time-dependence, but it was felt that the effects of anisotropy could be
exhibited on a broader scale within the present framework, due to prohibitive labor associa
ted with a large number of computations for other time-dependencies.

Figures 3 and 4 give responses for the cubic media pyrites and sodium chloride (the
disturbance is the same for the three cubic axes), and isotropic media with (1 = 0'10,0,20,
0·30 and 0·45. Again, the isotropic materials differ in their behaviour from the anisotropic
ones, as evidenced by the contributions from the S phase. For pyrites and sodium chloride,
the S wave contribution is quite small, whereas it is very pronounced in the various isotropic
media, the smaller (1, the bigger being the effect. Also, the response in both anisotropic
media shows a uniform decrease after the PP phase (until the arrival of the PPP pulse),
whereas in the isotropic media there is a period of decrease followed by an increase.

The disturbances for the transversely isotropic material ice, the hexagonal medium
cobalt, and the orthorhombic material ex-uranium are presented in Fig. 5, the axes in all
cases being: H~ = y, H( = z. The overall features are similar to those present in the cubic
media, but again are different from those in any isotropic solid, in the weakness of the S
phase, and the ultimate decay after the PP arrival (until the PPP arrival). Inspection of
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Figs. 3, 4 and 5 shows that some differences exist between the various anisotropic media,
particularly in the interval between the PP and PS waves, in which the amplitudes in pyrites
and iX-uranium decrease uniformly, whereas those in ice, cobalt and sodium chloride exhibit
a maximum.
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medium cobalt, the transversely isotropic medium ice (axes in both cases: H~ = y, H( = z), and the

orthorhombic medium iX-uranium (axes: H~ = y, H( = z).
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One measure of anisotropy could be the effect on the response of the orientation of the
axes of symmetry with respect to the plate surfaces. This is illustrated in Figs. 6 and 7 in
which the response for the orthotropic medium beechwood is given for the orientations
(i) H~ = x, H( = y, (ii) H~ = x, H( = z, and (iii) H~ = y, H( = z. As the diagrams show,
this effect can be quite pronounced. One notable difference is in the sequence of arrivals.
For (i) it is P, PP, S, PPP, whereas for (ii) and (iii) it is P, S, PP, PS. Other noteworthy items
are the rise in amplitude in (iii) after the P phase-in common with isotropic media-a
feature which is absent in (i) and (ii), and the strong increase in (iii) after the PP arrival,
which is again similar to an isotropic response, except for the rapid decay after the arrival
of the PS wave.
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FIG. 7. Midplate vertical displacement, for line load problem, as a function of time for the orthotropic
material beechwood (axes: H~ = y, H( = z).
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A6cTpaKT-.LI:aeTcli cPopMaJIbHoe peweHHe ,lI,JIli KJIaCCa He-oceCHMMeTpH'IeCKHX 3a,ll,a'l, KacaIOWHXCli
nonepe'lHO H30TponHoH ynpyroH nJIaCTHHKH. HCnOJIb3yeTcli MeTO,ll. HHBepCHH KaHlIp,ll,a-,lI,e ryna ,lI.Jlll
nOJIy'leHHlI peweHHH B lIBHOH cPopMe, Ha OCHOBe OCH :mHI.\eHTpa, ,lI,JIli HeKOTopblX MaTepHaJIOB, eCJIH TO'lKa
KOHTaKTa C,lI,BHra, C 3aBHCHMOCTbIO OT BpeMeHH THna "OTKoca", npHJIOlKeHHali KO,ll.HOH CTopOHe nJIaCT
HHKH. 06cYlK,lI,aeTCli TaKlKe 3a,ll,a'la, KacaIOwalicli ,lI,BHlKeHHlI Tlma nJIOCKOH ,lI.ecPopMaI.\HH, HMeHHo, npHMeH
eHHlI HMnYJIbCHoll:, JIHHell:Holl: Harpy3KH KO,ll,HOH cTopOHe aHH30TponHOH nJIaCTHHKH. HHBePCHli ,lI.JIli HeKOT
OpblX MaTepHaJIOB BbICO,ll.HTCli Ha OCHOBe OCH 3nHI.\eHTpa. npHBO,ll.HTCli '1HCfleHHbIH cnoco6 peweHHi'i ,lI.flll
060HX CJIy'laeB.


